• Anomaly Detection for Discrete Sequences: A Survey
    • 问题1:已有一个正常的集合,新来一个样本,判断其异常分数
    • Solutions: generative model, non-parametric density estimate, similarity kernel
      • finite state automata (FSA)
      • Cluster method:
        • K-medoid algorithm
        • probabilistic suffux trees
      • Similarity measures:
        • Simple matching coefficient: match two sequences’ similarity
        • Longest common subsequence (LCS), nLCS
      • Markovian Techniques
        • fix markovian techniuqes
        • Variable Markovian Techniques
        • Sparse Markovian Technuques
      • Hidden Markov Model Based Techniques
    • 问题2: 从一个长序列里面检测一个异常的子序列
    • Solutions:
      • window scoring techniques
      • segmentation technique
    • 问题3: 根据序列的频繁程度来判定异常
    • Solutions:
      • Surprise detections in the context of time series data
      • some basic counting method
        • Counting the number :frequency vs history frequency
        • Counting the number of times a substring of the query pattern’s accurs in a sequence

最后更新: 2018年09月01日 17:34

原始链接: http://yoursite.com/2018/09/01/LogAnomaly/

× 请我吃糖~
打赏二维码